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Hybrid finite compact-WENO schemes for shock calculation
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SUMMARY

Hybrid finite compact (FC)-WENO schemes are proposed for shock calculations. The two sub-schemes
(finite compact difference scheme and WENO scheme) are hybridized by means of the similar treatment
as in ENO schemes. The hybrid schemes have the advantages of FC and WENO schemes. One is that they
possess the merit of the finite compact difference scheme, which requires only bi-diagonal matrix inversion
and can apply the known high-resolution flux to obtain high-performance numerical flux function; another
is that they have the high-resolution property of WENO scheme for shock capturing. The numerical
results show that FC-WENO schemes have better resolution properties than both FC-ENO schemes and
WENO schemes. In addition, some comparisons of FC-ENO and artificial compression method (ACM)
filter scheme of Yee et al. are also given. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many practical aerodynamic problems, the flow field often involves the complicated regions
that contain both shocks and smooth structures. For the numerical simulation of these problems,
it is required that the schemes have the capability of shock capturing and fine-scale feature
capturing.

One class of efficient shock-capturing schemes are TVD [1], ENO [2, 3] and WENO [4, 5]
schemes. ENO schemes overcome the well-known order-degeneracy phenomenon of the TVD
schemes at critical points, and can obtain uniformly high-order accuracy right up to the discon-
tinuity. WENO schemes have the advantage over the ENO ones to yield higher-order accuracy
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for the same stencil size. The ENO and WENO schemes can resolve flow features accurately and
robustly, however, they give slightly dissipative solutions [6]. There are lots of works to improve
the performance of ENO schemes, such as Yee et al. [7] developed a new low-dissipative high-
order shock-capturing scheme (for simplicity, in the article, the scheme is referred to as ACM
filter scheme as in Reference [8] or ACM) that is composed of the high-order spatial and temporal
base scheme and the filter (the numerical dissipation); Wang and Chen [9] proposed modifica-
tion of the WENO smoothness measures and developed an optimized WENO scheme, which
achieves better resolution of high wavenumbers. Balsara and Shu [10] proposed the MPWENO
(monotonicity-preserving WENO) scheme that is up to 11th-order accurate in space, Kim and
Kwon [6] proposed a hybrid central-WENO scheme in which the sixth-order central difference
scheme and the WENO-5 are applied. Jiang [11] has proposed the dispersion-controlled dissipative
scheme.

Compact schemes have become popular due to their high-order accuracy and small stencils
[12], but for the problems involving discontinuities, they may produce oscillations whose am-
plitude does not attenuate even using denser grid. In recent years, there has been an increased
interest in developing high-order accurate compact schemes to adapt to capturing shock. Cockburn
and Shu [13] presented the idea of TVDM (total variation diminishing in the means) to develop
nonlinearly stable compact schemes, which have uniform high-order accuracy even at local ex-
tremum point. Ravichandran [14] developed further this kind of scheme to TVD scheme, which
uses a wider class of compact upwind operators and together with the split fluxes of the KFVS
(kinetic flux vector splitting) scheme to obtain high-order semi-discretizations of two-dimensional
Euler equations in general coordinates. Deng and Zhang [15] developed an algorithm whereby the
resolution properties of WENO schemes are improved by introducing compact approximations for
pointwise derivatives rather than explicit ones. Zhu and Chan [16] proposed a third-order upwind
compact scheme, in the region where pressure gradient is large, group velocity of the scheme
can be controlled [17] to eliminate the numerical oscillations. An alternative effective approach
is to develop so-called hybrid methods in which the non-oscillatory shock-capturing schemes are
only used locally near the discontinuities and the compact schemes are used in smooth regions.
Adams and Shariff [18] developed hybrid schemes that rely on the coupling of a non-conservative
compact upwind scheme with a shock-capturing ENO scheme which operates on the discontinuity
region. Pirozzoli [19] improved in several aspects of this approach, proposed the conservative
hybrid compact-WENO schemes. Ren et al. [20] presented a characteristic-wise hybrid compact-
WENO scheme, which can be considered as the weighted average of two sub-schemes: the con-
servative compact scheme proposed by Pirozzoli [19] and the WENO proposed by Jiang and
Shu [5].

For many compact schemes, it is necessary to solve the inversion of a penta-diagonal matrix
[18] or tri-diagonal matrix [13, 14, 19, 20]. In addition, the performance of those hybrid schemes
[18–20] rely on the problem-dependent threshold value rc, which are used to decide where the
numerical flux of the ENO/WENO may be used. From the point of view of avoiding the problem-
dependent parameter, Ravichandran’s method [14] is successful. In order to illustrate the method
it is convenient to consider the scalar conservative hyperbolic equation

�u
�t

+ � f

�x
= 0

u(x, 0) = u0(x)

(1)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:531–560
DOI: 10.1002/fld



HYBRID FINITE COMPACT-WENO SCHEMES FOR SHOCK CALCULATION 533

where f (u) is the flux function and can be split into two parts, i.e. f (u) = f +(u) + f −(u) with
d f +(u)/du�0 and d f −(u)/du�0 and d f −(u)/du�0. The semi-discrete conservative difference
scheme of (1) can be written as follows:

du j

dt
+ 1

�x
(h j+1/2 − h j−1/2) = 0 (2)

where the numerical flux h j+1/2 = h+
j+1/2 + h−

j+1/2.

The Ravichandran’s method [14] can be divided into two steps. Firstly, the compact flux is
solved by using the following equations:

�+ĥ+
j−1/2 + �+ĥ+

j+1/2 + �+ĥ+
j+3/2 =

n2∑
l=n1

a+
l f +

j+l (3a)

�−ĥ−
j−1/2 + �−ĥ−

j+1/2 + �−ĥ−
j+3/2 =

n4∑
l=n3

a−
l f −

j+l (3b)

the final numerical flux functions defined as

h+
j+1/2 = f +

j + d f +(m)
j+1/2, h−

j+1/2 = f −
j+1 − d f −(m)

j+1/2 (4)

where d f +(m)
j+1/2 =mm(d f +

j+1/2, �+ f +
j ,�+ f +

j−1), d f −(m)
j+1/2 =mm(d f −

j+1/2, �+ f −
j , �+ f −

j+1),

d f +
j+1/2 = ĥ+

j+1/2 − f +
j , d f

−
j+1/2 = f −

j+1 − ĥ−
j+1/2, �+ f ±

j = f ±
j+1 − f ±

j , n1(n3) and n2(n4) are

start- and end-location of f j+l in different schemes. Parameters �±, �±, �± and a±
l are decided

by the requirement of different accuracy and property of the scheme, for example, for the third-
order upwind compact scheme [21], they are �± = 5/12, �± = 8/12, �± = − 1/12, a+

0 = a−
1 = 1.

mm(a1, a2, a3) is the limiter function and defined as

mm(a1, . . . , ak) =
{
smin1�i�k |ai | if sign (a1) = · · · = sign(ak) = s

0 otherwise
(5)

In Reference [22], we presented the idea of finite compact (FC) difference schemes in which,
instead of Equation (3), the following equations are used:

�+h+
j−1/2 + �+ĥ+

j+1/2 =
n2∑

l=n1

a+
l f +

j+l (6a)

�−ĥ−
j+1/2 + �−h−

j+3/2 =
n4∑

l=n3

a−
l f −

j+l (6b)

The fluxes h+
j−1/2 and h−

j+3/2 can be defined as Equation (4) or other ways. With different limiter
functions, a third-order accurate FC-TVD scheme, a third-order accurate FC-ENO scheme and a
fifth-order accurate FC-ENO scheme were constructed in Reference [22].

Equation (6) has three advantages over Equation (3):

(1) If the boundary fluxes ĥ+
−1/2 and ĥ−

N+1/2 are given, ĥ±
j+1/2 can be solved explicitly, so

tri-diagonal matrix inversion of Equation (3) is avoided.
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(2) The fluxes h+
j−1/2 and h

−
j+3/2 having special TVD or ENO characteristics can be constructed

in advance, they may not be ĥ+
j−1/2 and ĥ−

j+3/2 in Equation (3). This property results in,
as the solution contains discontinuities, more accurate and better resolution solution than
Equation (3) [14]. Notice that the schemes with a three-point stencil of implicit operator
(e.g. Equation (3) with �± �= 0, �± �= 0) cannot use the known fluxes h+

j−1/2 and h−
j+3/2 to

solve ĥ+
j+1/2 and ĥ−

j+1/2.

(3) In Equation (6), the limited (high-resolution) fluxes h+
j−1/2 and h−

j+3/2 are used at the

points in a discontinuity, and the coefficients of h+
j−1/2 and h−

j+3/2 are less than one, i.e.

�±/�±<1. So, in the region away from the discontinuity, the effect of the limited fluxes on
the accuracy become smaller and smaller and Equation (6) can retain its higher order of
accuracy.

In Reference [19], it is shown that the overall performance of hybrid schemes is critically
affected by the order of accuracy of the shock-capturing scheme that is employed. Although
WENO schemes are simulating the base ENO schemes around discontinuities, numerous tests
[5] show that the third-order WENO scheme is comparable to the third-order ENO schemes,
instead of the base second-order ENO scheme, and the fifth-order WENO scheme is comparable
to the fourth-order ENO scheme. WENO schemes therefore represent a better candidate than ENO
schemes. In this paper, the WENO fluxes are applied to instead of the TVD/ENO fluxes used in
FC-ENO schemes, the hybrid finite compact-WENO methods are proposed.

The boundary flux formulas proposed in Reference [22] will be implemented. The third-order
formulas are

h+
−1/2 = 1

3 f +
−1 + 5

6 f +
0 − 1

6 f +
1

h−
N+1/2 = − 1

6 f −
N−1 + 5

6 f −
N + 1

3 f −
N+1

(7)

and the fifth-order formulas are

h+
−1/2 = 1

60 (−3 f +
−2 + 27 f +

−1 + 47 f +
0 − 13 f +

1 + 2 f +
2 )

h−
N+1/2 = 1

60 (2 f −
N−2 − 13 f −

N−1 + 47 f −
N + 27 f −

N+1 − 3 f −
N+2

(8)

For the time discretization, the third-order TVD Runge–Kutta method [3] and fourth-order
Runge–Kutta method are used to discretize Equation (2) with spatial third-order and fifth-order
approximation, respectively.

The drawback of the parallelization unfriendliness of compact schemes makes the FC-schemes
extremely CPU intensive under parallel dominated supercomputers. The artificial compression
method (ACM) filter scheme with different filter proposed by Yee et al. [7, 8, 23, 24] requires a
similar CPU as a second-order TVD scheme and yet achieves higher accuracy than fifth-order
WENO scheme.

The ACM schemes use spatially high-order compact or non-compact central base scheme with
the product of flow sensors and the dissipative portion of TVD, MUSCL or 5th-WENO scheme
as a nonlinear filter. For Equation (1), the filter numerical fluxes can be written as

F̃j+1/2 = � j+1/2F
∗
j+1/2
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where F∗
j+1/2 is the dissipative portion of shock-capturing scheme, a form of the ACM sensor

� j+1/2 proposed in Reference [7] is � j+1/2 = kmax(� j , � j+1), where the parameter k is problem
dependent,

� j =
∣∣∣∣ |�u j+1/2| − |�u j−1/2|
|�u j+1/2| + |�u j−1/2| + �

∣∣∣∣
� is a positive real number to avoid divided by zero. The wavelet-based flow sensors can be referred
in References [8, 23]. With the wavelet sensor, the ACM can be improved.

As mentioned in Reference [8], the nonlinear filter dissipation comes from a second-order
accurate TVD method, if no switching were used the order of accuracy would have been reduced
to second order. The switch in the ACM method is of order �x when data are smooth, and will
therefore give formal order of accuracy three. In practice, the coefficient k is often taken small,
so that the constant in front of the third-order error term is very small.

In this paper, we will show the comparison of the FC-WENO schemes and the ACM schemes
for some examples. In the computation, if the spatial fourth-order central scheme is applied, the
dissipative portion of third-order WENO scheme is taken as a nonlinear filter, we denote it by
CEN4+WENO3fi; if the spatial sixth-order central scheme is applied, the dissipative portion of
fifth-order WENO scheme is taken as a nonlinear filter, we denote it by CEN6+WENO5fi.

2. HYBRID FINITE COMPACT WENO SCHEMES

2.1. Relations between FC-TVD/ENO schemes and ENO schemes

Firstly, the coefficients of the third-order [12, 25] and fifth-order schemes [26] in Equation (6) are
listed in Table I. Here only the positive flux ĥ+

j+1/2 will be discussed. The coefficients of f −
j+l in

the negative flux h−
j+1/2 are symmetric with respect to x j+1/2 and are not shown here.

The limiter function mm(a1, a2, a3) used in FC-TVD [22] can be given as

mm(a1, a2, a3) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a1 if sign(a1) = · · · = sign(a3) and |a1| = min(|a1|, |a2|, |a3|)
a2/2 if sign(a1) = · · · = sign(a3) and |a2| = min(|a1|, |a2|, |a3|)
a3/2 if sign(a1) = · · · = sign(a3) and |a3| = min(|a1|, |a2|, |a3|)
0 otherwise

(9)

We can find that if the second or third value of the function mm(a1, a2, a3) is picked, the numerical
flux function h+

j+1/2 (Equation (4)) becomes the second-order ENO scheme:

h+
j+1/2 = qrk ( f

+
j+k−r+1, . . . , f +

j+k) (10)

Table I. The coefficients of the third-order and fifth-order schemes in Equation (6).

Order � � a−2 a−1 a0 a1 a2

Third 2 4 — — 5 1 —
Fifth 24 36 — 3 47 11 −1
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Table II. Coefficients ark,l with r = 2.

r k l = 0 l = 1

2
0
1

−1/2
1/2

3/2
1/2

where r = 2, k = 0 or k = 1. qrk (g0, . . . , gr−1) = ∑r−1
l=0 a

r
k,l gl , a

r
k,l are the coefficients of second

ENO scheme concluded in Reference [5], here are listed in Table II.
The numerical flux function h+

j+1/2 of the fifth-order accurate FC-ENO scheme can be given
as follows:

h+
j+1/2 = f +

j + 1
2 m(�+ f +

j , �+ f +
j−1) + Df +(m)

j+1/2 (11)

where

m(a1, a2) =
{
a1 if |a1|�|a2|
a2 otherwise

Df +(m)
j+1/2 =

⎧⎨⎩mm1(Df +
j+1/2, D

+
j , D+

j+1) if |�+ f +
j |�|�+ f +

j−1|
mm2(Df +

j+1/2, D
+
j , D+

j−1) otherwise

mm1(a1, a2, a3) =
{
a1 if |a1| = min(|a1|, |a2|, |a3|)
−ai/6 otherwise |ai | = min(|a1|, |a2|, |a3|)

(12a)

mm2(a1, a2, a3) =
{
a1 if |a1| = min(|a1|, |a2|, |a3|)
ai/3 otherwise and |ai | = min(|a1|, |a2|, |a3|)

(12b)

where

D±
j =�+ f ±

j − �+ f ±
j−1

Df +
j+1/2 = ĥ+

j+1/2 − f +
j − 1

2 m(�+ f +
j , �+ f +

j−1)

Df −
j+1/2 = ĥ−

j+1/2 − f −
j+1 + 1

2 m(�+ f −
j+1, �+ f −

j )

we can find that if the second or third values of the function mm1(a1, a2, a3) or mm2(a1, a2, a3)
is picked, the flux h+

j+1/2 (Equation (11)) becomes the third-order ENO scheme,

h+
j+1/2 = qrk ( f

+
j+k−r+1, . . . , f +

j+k)

where r = 3, k = 0, k = 1 or k = 2. qrk (g0, . . . , gr−1) = ∑r−1
l=0 a

r
k,l gl , the coefficients ark,l of third-

order ENO scheme are listed in Table III (see Reference [5]).
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Table III. Coefficients ark,l with r = 3.

r k l = 0 l = 1 l = 2

0 1/3 −7/6 11/6
3 1 −1/6 5/6 1/3

2 1/3 5/6 −1/6

Table IV. Optimal weights Cr
k .

Cr
k k = 0 k = 1 k = 2

r = 2 1/3 2/3 —
r = 3 1/10 6/10 3/10

2.2. The resolution properties of finite compact schemes and WENO schemes

The detailed description of the WENO schemes can be referred to Reference [5]. For completeness,
the numerical flux functions of the WENO schemes are also given as follows. In the same way,
here we only discuss the positive flux h+WENO

j+1/2 , and drop the superscript ‘+’ for simplicity. The

formulas for the negative flux h−WENO
j+1/2 are symmetric with respect to x j+1/2.

hWENO
j+1/2 =

r−1∑
k=0

�kq
r
k ( f j+k−r+1, . . . , f j+k) (13)

where the weight �k is defined by

�k = �k
�0 + · · · + �r−1

and �k = Cr
k

(� + ISk)2
, k = 0, 1, . . . , r − 1

Cr
k is the optimal weight, and is given in Table IV. ISk is the smoothness measurement and � is a

positive real number to avoid divided by zero. When r = 2, ISk is computed by

IS0 = ( f j − f j−1)
2, IS1 = ( f j+1 − f j )

2

When r = 3, ISk is computed by

IS0 = 13
12 ( f j−2 − 2 f j−1 + f j )

2 + 1
4 ( f j−2 − 4 f j−1 + 3 f j )

2

IS1 = 13
12 ( f j−1 − 2 f j + f j+1)

2 + 1
4 ( f j−1 − 3 f j+1)

2

IS2 = 13
12 ( f j − 2 f j+1 + f j+2)

2 + 1
4 (3 f j − 4 f j+1 + f j+2)

2

In order to investigate the resolution properties of the finite compact difference schemes and
the WENO schemes, we assume f = au and a>0 in Equation (1) with the initial condition
u(x, 0)= eikx . The exact solution of Equation (1) is

u(x, t) = eik(x−at)

and the solution of different difference schemes can be obtained as

u(x j , t) = e−kr at/�xeik(x j−ki at/k�x) (14)
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It is easy to obtain the formulas of different scheme as follows:

k3-FCi = sin(�)[8 + cos(�)]
5 + 4 cos(�)

, k3-FCr = [cos(�) − 1]2
5 + 4 cos(�)

k5-FCi = sin(�)[62 + 15 cos(�) − 2 cos2(�)]
39 + 36 cos(�)

, k5-FCr = −2[cos(�) − 1]3
39 + 36 cos(�)

kWENO-3
i = 1

6 [− sin(2�) + 8 sin(�)], kWENO-3
r = 1

6 [cos(2�) − 4 cos(�) + 3]

kWENO-5
i = 1

30 [sin(3�) − 9 sin(2�) + 45 sin(�)]

kWENO-5
r = 1

30 [− cos(3�) + 6 cos(2�) − 15 cos(�) + 10]

where � (� = k�x) is the scaled wave number. The superscript of ki and kr denotes the different
schemes, for example, 3-FC and WENO-3 represent the third-order finite compact difference
scheme and the third-order WENO scheme, respectively.

The variations of ki and kr of the FC-schemes, Equation (6), and the WENO-schemes, Equation
(13), versus scaled wave number � is given in Figure 1. The figure shows that the FC-schemes yield
better resolution properties than the WENO schemes. The dissipation error of 3-FC scheme is larger
than the WENO-3 only if �>�c1(cos(�c1) =−1/2), the similar behaviour of 5-FC scheme occurs

k i

0 1 2
α α

3
0

0.5

1

1.5

2

2.5

3 exact
3-FC
WENO-3
5-FC
WENO-5

k r

0 1 2 3
0

1

2

3

4

5 3-FC
WENO-3
5-FC
WENO-5

cos(α)=-1/2
cos(α)=-2/3

Figure 1. Variations of ki and kr of different schemes vs �.
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only if �>�c2(cos(�c2) = − 2/3). Figure 1 also shows that the higher-order schemes (the FC-
schemes or the WENO schemes) produce better resolution properties.

Therefore, it is preferential to use the FC-schemes in smooth regions. At the same time, the
WENO scheme yields better properties than its base ENO scheme. Based on the two reasons, the
hybrid FC-WENO schemes are constructed.

2.3. The hybrid finite compact-WENO schemes

The scheme, which consists of the third-order finite compact scheme Equation (6), (4) with the
modified limiter function

mm(a1, a2, a3) =
{
a1 if |a1|�min(|a2|, |a3|)
ai/2 else if |ai | = min(|a2|, |a3|)

(15)

will be referred to as ‘3-FC-ENO-2’. The difference between mm(a1, a2, a3) and mm(a1, a2, a3)
is that there is no fourth value (i.e. zero) in the latter.

In the same way, the hybrid FC-WENO scheme constructed by third-order FC-scheme coupled
with third-order WENO scheme will be referred to as ‘3-FC-WENO-3’, and its numerical fluxes’
functions can be calculated by

h+
j+1/2 =

⎧⎨⎩ ĥ+3-FC
j+1/2 if |d f +

j+1/2|�min(|�+ f +
j |, |�+ f +

j−1|)
h+WENO-3
j+1/2 otherwise

(16a)

h−
j+1/2 =

⎧⎨⎩ ĥ−3-FC
j+1/2 if |d f −

j+1/2|�min(|�+ f −
j |, |�+ f −

j+1|)
h−WENO-3
j+1/2 otherwise

(16b)

Similar to the analysis in Reference [22], the following equations are always satisfied:

d f ±
j+1/2 = 1

2

� f ±
j

�x
�x + O(�x2), �+ f ±

j = � f ±
j

�x
�x + O(�x2)

So in smooth regions away from critical points (� f ±
j /�x = 0), formulas |d f +

j+1/2|�min(|�+ f +
j |,

|�+ f +
j−1|) and |d f −

j+1/2|�min(|�+ f −
j |, |�+ f −

j+1|) are always satisfied. Therefore, for sufficiently
small �x , Equation (16) yields

h±
j+1/2 = ĥ±3-FC

j+1/2

At critical points, the fluxes may become the fluxes of WENO-3 scheme, which is also third-order
accurate. So 3-FC-WENO-3 Equation (16) is uniformly third-order accurate in smooth regions,
and also makes the most of finite compact scheme.

Similarly, ‘5-FC-ENO-3’ denotes the original scheme Equation (11). ‘5-FC-WENO-5’ denotes
the hybrid FC-WENO scheme, in which the fifth-order FC-scheme coupled with the fifth-order
WENO scheme, and its numerical fluxes functions can be calculated as follows. The positive
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part is

if |�+ f +
j−1|�|�+ f +

j | then

h+
j+1/2 =

⎧⎨⎩ ĥ+5-FC
j+1/2 if |Df +

j+1/2|�min(|D+
j |, |D+

j−1|)
h+WENO-5
j+1/2 otherwise

else (17a)

h+
j+1/2 =

⎧⎨⎩ ĥ+5-FC
j+1/2 if |Df +

j+1/2|�min(|D+
j |, |D+

j+1|)
h+WENO-5
j+1/2 otherwise

end if

and the negative part is

if |�+ f −
j+1|�|�+ f −

j | then

h−
j+1/2 =

⎧⎨⎩ ĥ−5-FC
j+1/2 if |Df −

j+1/2|�min(|D−
j+1|, |D−

j+2|)
h−WENO-5
j+1/2 otherwise

else (17b)

h−
j+1/2 =

⎧⎨⎩ ĥ−5-FC
j+1/2 if |Df −

j+1/2|�min(|D−
j |, |D−

j+1|)
h−WENO-5
j+1/2 otherwise

end if

Similarly, there are

Df +
j+1/2 =

⎧⎨⎩− 1
6 f +′′

j �x2 + O(�x3) if |�+ f +
j |�|�+ f +

j−1|
1
3 f +′′

j �x2 + O(�x3) otherwise

Df −
j+1/2 =

⎧⎨⎩− 1
6 f −′′

j+1�x
2 + O(�x3) if �+ f −

j+1|�|�+ f −
j |

1
3 f −′′

j+1�x
2 + O(�x3) otherwise

D+
k = f +′′

j �x2 + O(�x3), k = j − 1, j, j + 1

D−
k = f −′′

j+1�x
2 + O(�x3), k = j, j + 1, j + 2
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With the same discussion as 3-FC-WENO-3, we know that the algorithm Equation (17) always
yields h±

j+1/2 = ĥ±5-FC
j+1/2 in the smooth regions away from point of f ±′′

j = 0; and WENO-5 may be

applied only at the point of f ±′′
j = 0. So, whatever happens, 5-FC-WENO-5 is uniformly fifth-order

accurate in smooth regions, and also makes the most of finite compact scheme.

3. NUMERICAL EXAMPLES

(1) Linear transport equation. The transport equation is given as

�u
�t

+ �u
�x

= 0, −1�x�1

u(x, 0) = sin(�x), −1�x�1, periodic boundary condition

The example is used to examine the accuracy of different schemes. In our computation, a Courant
number �= 0.2 is used. Table V gives the comparisons of accuracy of 3-FC-ENO-2, WENO-
3, 3-FC-WENO-3 and CEN4+WENOfi3 schemes. The table indicates that 3-FC-WENO-3 gives
superior third-order accuracy and is the best one among 3-FC-ENO-2,WENO-3 and 3-FC-WENO-3
schemes. From the table, it seems that 3-FC-ENO-2 is less accurate than WENO-3, this is caused
by the treatment of the critical points (� f ±

j /�x = 0). In critical points, 3-FC-ENO-2 becomes
second-order ENO scheme. In fact, in the regions away from critical points, 3-FC-ENO-2 is
comparable to 3-FC-ENO-3 scheme. This can be seen from the comparisons of pointwise errors
in Figure 2(a). One available treatment to overcome the drawback is to use a modified limiter
function mm(a1, a2, a3),

mm(a1, a2, a3) =
{
a1 if |a1|�M�x2

mm(a1, a2, a3) otherwise
(18)

to instead of mm(a1, a2, a3) in 3-FC-ENO-2, the discussion can be seen in Reference [22]. From
Table V, we also can see that the 3-FC-ENO-3 is comparable to ACM with large parameter k (e.g.
k = 0.5), but it is less accurate than ACM with small k (e.g. k = 0.005).

Table VI gives the comparisons of accuracy of 5-FC-ENO-3, WENO-5, 5-FC-WENO-5 and
CEN6+WENOfi5 schemes. The table indicates that 5-FC-WENO-5 gives fifth-order accuracy and
is the best one among 5-FC-ENO-3, WENO-5 and 5-FC-WENO-5 schemes. CEN6+WENOfi5
with different parameter k can reach sixth-order accuracy, and is better than 5-FC-WENO-5
schemes.

Similar to 3-FC-ENO-2 scheme, 5-FC-ENO-3 seems less accurate than WENO-5, this cause is
that third-order ENO scheme is applied in points of f ±′′

j = 0. In fact, in the regions away from

points of f ±′′
j = 0, 5-FC-ENO-3 is in good agreement with the 5-FC-ENO-5 scheme (see Figure

2(b)).
That is to say, 5-FC-ENO-3 scheme is of fifth-order accurate in the regions away from

points of f ±′′
j = 0. The order degeneracy can be avoided by using the modified limiter functions
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Table V. Comparisons of different schemes, t = 1.

Scheme N L∞ error L∞ order L1 error L1 order

3-FC-WENO-3

20
40
80
160
320
640

0.1024
0.3833e-1
0.1148e-1
0.1853e-2
0.5943e-4
0.1422e-5

—
1.418
1.739
2.631
4.963
5.385

0.4427e-1
0.1068e-1
0.1748e-2
0.1315e-3
0.3115e-5
0.1614e-6

—
2.051
2.611
3.733
5.400
4.271

WENO-3

20
40
80
160
320
640

0.1205
0.4794e-1
0.1716e-1
0.4830e-2
0.8278e-3
0.5766e-4

—
1.330
1.482
1.829
2.545
3.844

0.5542e-1
0.1487e-1
0.3333e-2
0.5779e-3
0.6222e-4
0.4010e-5

—
1.898
2.158
2.528
3.215
3.956

3-FC-ENO-2

20
40
80
160
320
640

0.1150
0.4395e-1
0.1573e-1
0.5486e-2
0.1867e-2
0.6145e-3

− − −
1.388
1.482
1.520
1.555
1.603

0.5252e-1
0.1283e-2
0.2757e-2
0.5557e-3
0.1097e-3
0.2055e-4

− − −
2.033
2.218
2.307
2.344
2.416

ACM :
CEN4 + WENO3fi
k = 0.5

20
40
80
160
320
640

0.5882e-1
0.2316e-1
0.7978e-2
0.1812e-2
0.1928e-3
0.8431e-5

—
1.345
1.538
2.138
3.232
4.515

0.2351e-1
0.6506e-2
0.1433e-2
0.2015e-3
0.1166e-4
0.2678e-6

—
1.853
2.183
2.830
4.111
5.444

ACM :
CEN4 + WENO3fi
k = 0.005

20
40
80
160
320
640

0.1115e-2
0.2109e-3
0.6801e-4
1.8885e-4
0.2205e-5
0.9311e-7

—
2.402
1.633
1.851
3.100
4.566

0.6861e-3
0.7148e-4
0.1373e-4
0.2327e-5
0.1487e-6
0.3617e-8

—
3.263
2.380
2.561
3.968
5.361

mm1(a1, a2, a3) and mm2(a1, a2, a3),

mm1(a1, a2, a3) =
{
a1 if |a1|�M�x3

mm1(a1, a2, a3) otherwise
(19a)

mm2(a1, a2, a3) =
{
a1 if |a1|�M�x3

mm2(a1, a2, a3) otherwise
(19b)

instead of mm1(a1, a2, a3) and mm2(a1, a2, a3) (see Reference [22]).
Comparing Figure 2(a) with (b), we can see that the large errors of different schemes locate at

different region: 3-FC schemes locate at the regions including the maximum and 5-FC schemes
locate at the regions including inflexion. This is agreement with the analysis of second-order ENO
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Figure 2. Pointwise errors of: (a) 3-FC-ENO-2, WENO-3 and 3-FC-WENO-3 schemes, N = 320, t = 1;
and (b) 5-FC-ENO-3, WENO-5 and 5-FC-WENO-5 schemes, N = 320, t = 1.

and third-order ENO scheme are applied at critical points ( f ±′
j = 0) and at points of f ±′′

j = 0,
respectively.

In order to compare the CPU and efficiency of different method, set f (u) = u in Equation
(1), we give the statistical times of multiplication, addition and logical operation in the compu-
tation of h j+1/2 in Tables VII(a) and (b). Here, if both functions 	 j = 	(u j+k, . . . , u j+p) and
	 j+1 =	(u j+1+k, . . . , u j+1+p) appear in a formula, we only count the operations in 	 j . The
multiplication of two constants is not regarded as one operation.

From Table VII(b), we can see, for the operations of multiplication and addition,WENO3+3RK
is 16 and 27% less than 3-FC-WENO-3+3RK; CEN4+WENO3fi+4RK is 31 and 7% less than
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Table VI. Comparisons of different schemes, t = 1.

Scheme N L∞ error L∞ order L1 error L1 order

5-FC-WENO-5

10
20
40
80
160
320

0.7902e-2
0.3116e-3
0.1379e-4
0.6282e-6
0.2897e-7
0.1337e-8

—
4.664
4.498
4.456
4.439
4.444

0.3897e-2
0.1071e-3
0.3506e-5
0.1105e-6
0.3403e-8
0.1048e-9

—
5.185
4.933
4.988
5.021
5.021

WENO-5

10
20
40
80
160
320

0.2958e-1
0.1455e-2
0.4592e-4
0.1478e-5
0.4417e-7
0.1367e-8

—
4.346
4.986
4.957
5.064
5.014

0.1591e-1
0.7388e-3
0.2221e-4
0.6901e-6
0.2169e-7
0.6789e-9

—
4.429
5.056
5.008
4.993
4.999

5-FC-ENO-3

10
20
40
80
160
320

0.1548e-1
0.2576e-2
0.4588e-3
0.8497e-4
0.1420e-4
0.2416e-5

—
2.587
2.489
2.433
2.581
2.555

0.7180e-2
0.7620e-3
0.8050e-4
0.8027e-5
0.8187e-6
0.8264e-7

—
3.236
3.242
3.326
3.293
3.308

ACM :
CEN6 + WENO5fi
k = 0.5

10
20
40
80
160
320

0.7119e-2
0.1912e-3
0.6298e-5
0.1604e-6
0.3708e-8
0.6849e-10

—
5.219
4.924
5.295
5.435
5.789

0.5101e-2
0.9843e-4
0.1772e-5
0.2965e-7
0.4767e-9
0.6557e-11

—
5.696
5.796
5.901
5.959
6.184

ACM :
CEN6 + WENO5fi
k = 0.005

10
20
40
80
160
320

0.1347e-2
0.2210e-4
0.3540e-6
0.5664e-8
0.9223e-10
0.1729e-11

—
5.930
5.964
5.966
5.940
5.737

0.8713e-3
0.1387e-4
0.2187e-6
0.3503e-8
0.5841e-10
0.1087e-11

—
5.973
5.987
5.964
5.906
5.748

3-FC-WENO-3+3RK. WENO5+4RK is 13 and 22% less than 5-FC-WENO-5+4RK; CEN6+
WENO5fi+4RK is 61 and 53% less than 5-FC-WENO-5+4RK.

For the one-dimensional Euler equation, if the Steger–Warming flux vector splitting [27] is used,
we give the statistical computation of multiplication and addition of WENO5+4RK as

(40× 4× 2 + 6) × 3 + 45× 4= 1158; [(26 + 1) × 4× 2 + 11] × 3 + 25× 4= 781

where the factor 4 is the order of the Runge–Kutta method, the factor 2 denotes the flux splitting,
and the factor 3 is the three conservative variables of the one-dimensional Euler equation. Other
computations follow the similar idea. In the step of flux splitting, the operations include those in
obtaining pressure from conservative variables; in CEN-methods, the operations include those in
obtaining the fluxes from conservative variables. The comparisons are listed in Table VII(c).
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Table VII. Comparisons of the operations of different schemes and per time step.

Method Multiplication Addition Logical

(a) Comparisons of the operation of different schemes
Steger–Warming flux 45 25 —
vector splitting (1-D)
WENO-3 14 8 —
WENO-5 40 26 —
CEN4 3 3 —
CEN6 5 5 —
3-Compact 3 2 —
5-Compact 5 4 —
3-RK (Shu’s) 7 8 —
4-RK (Shu’s) 6 11 —

(b) Operations per time step
WENO3+3RK 14× 3 + 7= 49 8× 3 + 8= 32 —
3-FC-WENO-3+3RK 14× 3 + 3× 3 + 7= 58 8× 3 + 2× 3 + 6 + 8= 44 1× 3
CEN4+WENO3fi+4RK 3× 4 + 14 + 4 + 4 + 6= 40 3× 4 + 8 + 3 + 7 + 11= 41 —
WENO5+4RK 40× 4 + 6= 166 26× 4 + 11= 115 —
5-FC-WENO-5+4RK 40× 4 + 5× 4 + 1× 4 + 6= 190 26× 4 + 4× 4 + 4× 4 + 11= 147 2× 4
CEN6+WENO5fi+4RK 5× 4 + 40 + 6 + 4 + 6= 74 5× 4 + 26 + 5 + 7 + 11= 69 —

(c) Operations per time step of the one-dimensional Euler equation with Steger–Waring splitting
Operations per cent Operations per cent

WENO3+3RK 408 88 261 78 —
3-FC-WENO-3+3RK 462 100 333 100 9
CEN4+WENO3fi+4RK 224 48 190 57 —
WENO5+4RK 1158 89 781 80 —
5-FC-WENO-5+4RK 1302 100 973 100 32
CEN6+WENO5fi+4RK 413 32 328 34 —

Table VII(c) shows that the WENOs only need 80% CPU of FC-WENOs. CEN4+WENO3fi
+4RK only need about half CPU of 3-FC-WENO-3+3RK, and CEN6+WENO5fi+4RK only
need about one-third CPU of 5-FC-WENO-5+4RK. So CEN4+WENO3fi+4RK is the most
efficient one among WENO3+3RK, 3-FC-WENO-3+3RK and CEN4+WENO3fi+4RK; and
CEN6+WENO5fi+4RK is the most efficient one among WENO5+4RK, 5-FC-WENO-5+4RK
and CEN6+WENO5fi+4RK.

(2) �u/�t + �u/�x = 0, −1� x � 1. This equation is taken as the second test case where

u(x + 0.5, 0) =

⎧⎪⎪⎨⎪⎪⎩
−x sin(3/2�x2), −1� x< − 1/3

| sin(2�x)|, |x |<1/3

2x = − 1 − sin(3�x)/6, 1/3<x<1

and supplemented with a periodic boundary condition. The example is used to check the capability
of a numerical scheme to handle solutions with flow discontinuities and smooth regions at the same
time [2, 19]. The results are shown in Figures 3(a) and (f). Either for capturing discontinuities
or for capturing smooth complex structures, FC-WENO schemes are the best ones, and FC-ENO
schemes are better than WENO schemes. The results of the modified FC-ENO schemes, in which
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Figure 3. (a) Numerical results of case 2, N = 100, t = 2; (b) CEN4+WENO3fi with dif-
ferent k; (c) comparison of 3-FC-WENO-3 and CEN4+WENO3fi; (d) numerical results
of case 2, N = 100, t = 2; (e) CEN6+WENO5fi with different k; and (f) comparison

of 5-FC-WENO-5 and CEN6+WENO5fi.
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the modified limiter functions Equation (18) or Equation (19) with M = 1 are used, are not depicted
in the figure because of these are almost the same results as FC-ENO schemes.

From Figures 3(b) and (e), we can see that, if the solution contains discontinuity, the behaviour of
artificial compression method is much affected by the problem-dependent parameter k. If k is taken
to too small, the solution will yield overshot or oscillation; if k is taken to too large, the accuracy
will degenerate. Figure 3(c) gives the comparison of 3-FC-WENO-3 and CEN4+WENO3fi with
an appropriate parameter k (here, k = 0.375). It can be seen that CEN4+WENO3fi is better than
3-FC-WENO-3. Figure 3(f) gives the comparison of 5-FC-WENO-5 and CEN6+WENO5fi with
an appropriate parameter k (here, k = 0.375). In the case, CEN6+WENO5fi is less accurate than
5-FC-WENO-5.

(3) �u/�t + �u/�x = 0, −1� x � 1. This equation is accepted as the third case where

u(x, 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6 (G(x,�, z − 
) + G(x, �, z + 
) + 4G(x, �, z)), −0.8� x � − 0.6

1, −0.4� x � − 0.2

1 − |10(x − 0.1)|, 0� x � 0.2

1
6 (F(x, �, a − 
) + F(x, �, a + 
) + 4F(x, �, a)), 0.4� x � 0.6

0, otherwise

(20)

G(x,�, z) = e−�(x−z)2, F(x, �, a)=
√
max(1 − �2(x − a)2, 0), a = 0.5, z = − 0.7


 = 0.005, � = 10, � = log 2/36
2

The solution includes a smooth but narrow combination of Gaussians, a square wave, a sharp
triangle wave, and a half-ellipse [5]. 200 grid points are used and the solution is intergraded up to
t = 6 in calculations. The results in Figure 4 indicate that the same conclusions as in second test
case can be obtained for four types of waves.

Figures 4(b) and (f) give the results of ACMs with different parameter k. Figures 4(c) and
(g) give the comparisons of FC-WENO schemes and ACMs. From Figure 4(c), it can be seen
the result of Gaussians, the sharp triangle and the half-ellipse waves, CEN4+WENO3fi is more
accurate than 3-FC-WENO-3, but for the square wave, 3-FC-WENO-3 is better. From Figure 4(g),
5-FC-WENO-5 is better than CEN6+WENO5fi (k = 0.375) for all four waves. We notice that
for square wave, the results of all mentioned methods become asymmetrical. One reason is that
the ENO schemes apply the upwind points, so do WENO schemes. The numerical results also
can be seen Figure 2 in Reference [5], especially the result of WENO5 with artificial technique.
Another reason of FC-schemes is that they apply the two-point upwind weighted compact schemes,
Equation (6).

(4) Nonlinear transport equation. The nonlinear transport equation is used as the fourth test
case and can be written as

�u
�t

+ u
�u
�x

= 0, 0� x � 2�

u(x, 0) = 0.3 + 0.7 sin x, 0� x � 2�, with a periodic boundary condition

The Lax–Friedrichs splitting method is used, in which f ±(u) = 1
2 ( f (u) ± au) and a =

maxu | f ′(u)|. Figures 5(a) and (b) show the results at t = 2 with grid number of N = 80. For
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Figure 4. (a) Numerical results of example (3), N = 200, t = 2; (b) CEN4+WENO3fi
with different k; (c) comparison of 3-FC-WENO-3 and CEN4+WENO3fi (k = 0.375);
(d) numerical results of example (3), N = 200, t = 6; (e) the local enlarged part
of Figure 4(b); (f) CEN6+WENO5fi with different k; and (g) comparison of

5-FC-WENO-5 and CEN6+WENO5fi (k = 0.375).
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Figure 5. (a) Numerical results of example (4), N = 80, t = 2; (b) numerical results
of example (4), N = 80, t = 2; (c) comparisons of pointwise errors, N = 80, t = 2; (d)
comparisons of pointwise errors, N = 80, t = 2; (e) CEN4+WENO3fi with different
k; (f) comparison of 3-FC-WENO-3 and CEN4+WENO3fi; (g) CEN6+WENO5fi

with different k; and (h) comparison of 5-FC-WENO-5 and CEN6+WENO5fi.
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this case, the capability of capturing discontinuity of WENO is between FC-ENO and FC-WENO,
and FC-WENO schemes are also the best ones. Figures 5(c) and (d) give the comparisons of
pointwise errors. From Figures 5(c) and (d) we can see that in the region including discontinuity,
FC-ENO, WENO, and FC-WENO are almost the same performance, but in the most regions away
from the discontinuity, FC-ENO and FC-WENO obtain better accurate than WENO.

Figures 5(e) and (g) give the results of ACMs with different parameter k. Figures 5(f) and
(h) give the comparisons of FC-WENO schemes and ACMs. Small parameter k (e.g. k = 0.375)
causes the spurious oscillation near the discontinuity. Even with moderate k, the solution still has
somewhat oscillation. From the comparisons, we can see the ACMs with k = 1.25 are less than
FC-WENO schemes for this case.

(5) Viscous Burgers equation. The viscous Burgers equation is our fifth case and written as

�u
�t

+ u
�u
�x

= 1

Re

�2u
�x2

, a � x � b (21a)

u(a) = tanh(−aRe/2)

u(b) = tanh(−bRe/2)
(21b)

The steady solution of Equation (21a) with boundary condition (21b) is u(x)= tanh(−x Re/2).
At x = 0, the shock is formed with a large Re number. The goal of this test case is to examine
the capability of capturing the steady shock. In our computation, we take a = − 1 and b= 1,
and the grid point number on N = 80. The central difference scheme is applied for the second-
order derivative. The results with Re= 102 and Re= 103 are shown in Figures 6(a) and (b) (local
enlarged). It can be seen that for the case with Re= 103 resulting in strong shock, 3-FC-WENO-3
is almost the same as WENO-3; for the case with Re= 102 resulting in weak shock, 3-FC-WENO-
3 is slightly better than WENO-3. FC-ENO-2 is less than 3-FC-WENO-3 and WENO-3. In the
fifth-order schemes, 5-FC-WENO-5 is still best one, and in the case with strong shock, WENO-5
is better than 5-FC-ENO-3, however, in the case with weak shock, an opposite conclusion can be
obtained.

Figures 6(c) and (e) give the results of ACMs with different parameter k. Figures 6(d) and (f)
give the comparisons of FC-WENO schemes and ACMs. The behaviour of ACMs in this case is
same as example (4). The results of the ACMs with k = 075 are very near to FC-WENO schemes.

(6) Shu–Osher problem. Shu–Osher problem is the sixth example and it is governed with
one-dimensional Euler equations

�U
�t

+ �F
�x

= 0

where U= (�, �u, �e)T, F= (�u, �u2 + p, u(�e + p))T, p= (� − 1)(�e − �u2/2), � = 1.4. The
initial condition is

(�, u, p) =
{

(3.857143, 2.629369, 10.33333) when x< − 4

(1 + � sin 5x, 0, 1) when x � − 4

Here, � = 0.2. This test case is taken from Reference [28], and has been studied by several other
authors (see References [19, 20, 22]), and represents a Mach 3 shock wave interacting with a sine
entropy wave. The Steger–Warming flux vector splitting method [27] is used and the results at
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Figure 6. (a) Numerical results of steady solution of viscous Burgers equation; (b) nu-
merical results of steady solution of viscous Burgers equation; (c) CEN4+WENO3fi with
different k; (d) comparison of 3-FC-WENO-3 and CEN4+WENO3fi; (e) CEN6+WENO5fi

with different k; and (f) comparison of 5-FC-WENO-5 and CEN6+WENO5fi.
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Figure 7. (a) Density distributions of Shu–Osher problem with t = 1.8. Density dis-
tributions calculated by (A) 3-FC-ENO (N = 400), (B) WENO-3 (N = 400), (C)
3-FC-WENO-3 (N = 400), (D) 5-FC-ENO-3 (N = 200), (E) WENO-5 (N = 200),
(F) 5-FC-WENO-5 (N = 200); (b) comparison of 3-FC-ENO-2, WENO-3 and
3-FC-WENO-3, N = 400 (local enlarged); (c) comparison of 5-FC-ENO-3, WENO-5
and 5-FC-WENO-5, N = 200 (local enlarged); (d) comparison of 3-FC-WENO-3 and
CEN4+WENO3fi, N = 400 (local enlarged); and (e) comparison of 5-FC-WENO-5

and CEN6+WENO5fi, N = 200 (local enlarged).
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Figure 7. Continued.

time t = 1.8 are plotted in Figures 7(a)–(c). The ‘exact’ solutions (solid lines) are the numerical
solutions of WENO-5 scheme with grid points of N = 8000. For this case, it can be shown that
WENO-3 is between 3-FC-ENO-2 and 3-FC-WENO-3, 3-FC-WENO-3 has evidently improvement
over WENO-3, see Figure 7(b). The result of 5-FC-WENO-5 is the best, and 5-FC-ENO-3 is also
better than WENO-5, see Figure 7(c).

Figures 7(d) and (e) give the comparisons of FC-WENO schemes and ACMs. For this problem,
the results of FC-WENO schemes are comparable to ACMs with k = 0.5, and are less than ACMs
with k = 0.375. ACMs with smaller k (e.g. k = 0.2), the solution will become oscillatory.

(7) Two-dimensional linear conservation law with variable coefficients.

�u
�t

+ �(−yu)

�x
+ �(xu)

�y
= 0, −1� x, y � 1

with periodic boundary conditions. The initial condition is chosen as the characteristic function of
a circle with radius 0.5. The problem represents a solid body rotation and is used to investigate the
grid orientation effect as in References [13, 22]. The results of 3-FC-WENO-3 and 5-FC-WENO-
5 at t = 2 in a 100× 100 points grid are shown in Figures 8(a) and (b). The numerical results
indicate that the grid orientation effect is not strong. Figures 8(c) and (d) give the comparisons
at x = − 0.02,−0.48 and −0.52, we can see that FC-WENO is the best one among FC-ENO
and WENO, and FC-ENO is better than WENO, either the fifth-order scheme or the third-order
scheme.

(8) Shock vortex interaction. The problem is taken from Reference [5]. It describes the interaction
between a stationary shock and a vortex. The computational domain is taken to be [0, 2] × [0, 1]
as in Reference [5]. A stationary Mach 1.1 shock is positioned at x = 0.5 and normal to the x-axis.
Its left state is (�, u, v, P) = (1, 1.1

√
�, 0, 1). A small vortex is superposed to the flow left to
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Figure 8. (a) Solution of 3-FC-WENO-3, t = 2; (b) solution of
5-FC-WENO-5, t = 2; (c) comparison at x = −0.02,−0.48 and −0.52;

and (d) comparison at x = − 0.02,−0.48 and −0.52.

the shock and centres at (xc, yc) = (0.25, 0.25). The vortex is described as a perturbation to the
velocity (u, v), temperature (T = P/�), and entropy (S = ln(P/��) of the mean flow and denoted
by the tilde values:

ũ = ��e�(1−�2) sin �

ṽ = − ��e�(1−�2) cos �

T̃ = − (� − 1)�2e2�(1−�2)

4��

S̃ = 0

where � = r/rc and r = √
(x − xc)2 + (y − yc)2. Here � indicates the strength of the vortex, �

controls the decay rate of the vortex, and rc is the critical radius for which the vortex has the
maximum strength. � = 0.3, rc = 0.05, and � = 0.204.

We use a grid of 251× 101 which is uniform in both x and y directions. The Steger–Warming
flux vector splitting method [27] is used for this case. The ‘exact’ solution is computed by WENO-5
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Figure 9. (a) Two-dimensional shock vortex interaction. Pressure. (A)–(B) t = 0.35.
Thirty contours: (A) 3-FC-WENO-3; (B) 5-FC-WENO-5; (C)–(F) t = 0.60. Ninety
contours: (C) 3-FC-WENO-3; (D) 5-FC-WENO-5; (E) WENO-5; (F) 5-FC-ENO-3; and
(b) two-dimensional shock vortex interaction. Distribution of pressure along the y = 0.5
section. t = 0.60. (A)–(B) Comparison of 3-FC-ENO-2, WENO-3 and 3-FC-WENO-3;

(C)–(D) Comparison of 5-FC-ENO-3, WENO-5 and 5-FC-WENO-5.
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Figure 9. Continued.

scheme with a grid of 1000× 400 nodes. The time step is taken as follows [19]:

�t = �
�tx�ty
�tx�ty

with �tx = �x

max
i, j

(|ui, j | + ci, j )
, �ty = �y

max
i, j

(|vi, j | + ci, j )
, � = 0.1 (22)

The pressure contours are shown in Figure 9(a). The FC-ENO schemes, WENO schemes and
FC-WENO schemes perform similarly. A careful comparing of the results obtained by 5-FC-
WENO-5, 5-FC-ENO-3 and WENO-5, we can find that 5-FC-WENO-5 and WENO-5 are slightly
better than 5-FC-ENO-3 in the sense that less numerical noise is generated. Figure 9(b) gives
the comparisons of distribution of pressure along the y = 0.5 section. In the shock-behind and
vortex-centre regions, somewhat better behaviours of FC-ENO and FC-WENO over WENO are
observed. As a whole, FC-WENO is the best one.

(9) Shock/shear layer interaction. The problem is taken from Reference [7]. It is used to test
the behaviour of the schemes for shock waves interacting with shear layers where the vortices
arising from shear layer instability are forced to pass through a shock wave.
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Figure 10. Density contours for shock/shear layer interaction at t = 120 with a 321× 81 grid:
(a) density contours, TVD; (b) density contours, WENO-3; (c) density contours, 3-FC-ENO;
(d) density contours, 3-FC-WENO-3; (e) density contours, ENO-3; (f) density contours,
WENO-5; (g) density contours, 5-FC-ENO-3; and (h) density contours, 5-FC-WENO-5.
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Figure 10. Continued.

An oblique shock with angle �= 12◦ is made to impact on a spatially developing mixing
layer at an initial convective Mach number of 0.5. The computation domain is taken to be
[x, y] = [0, 200]× [−20, 20]. The inflow is specified with a hyperbolic tangent profile,

u = 2.5 + 0.5 tanh(2y)
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For the upper stream inflow, �u = 1.6374, pu = 0.3327; for the lower stream inflow, �l = 0.3626,
pl = 0.3327. The upper boundary condition is taken from the flow properties behind the oblique
shock. The lower wall uses a slip condition.

Fluctuations are added to the v-component of velocity to the inflow as

v′ =
2∑

k=1
ak cos(2�kt/T + 
k) exp(−y2/b)

with period T = �/uc, wavelength � = 30, convective velocity uc = 2.68, b= 10, a1 = a2 = 0.05,

1 = 0 and 
2 = �/2.

The controlling equation is two-dimensional Navier–Stokes equation. The Prandtl number is set
to 0.72, and the Reynolds number is chosen to be 500. The central difference scheme is used for
the viscous terms. The same grid as in Reference [7], 321× 81, is used. The time step is taken as
Equation (22) with �= 0.5.

The density contours are shown in Figure 10. As the same result in Reference [7], the TVD
scheme misses the correct vortex formation. WENO-3 does so. 3-FC-WENO-3 shows better
result than 3-FC-ENO-3, and it is comparable to third-order ENO scheme. WENO-5 is better than
5-FC-ENO-3, and less than 5-FC-WENO-5. This example illustrates the FC-schemes are applicable
for the complex two-dimensional shock/shear layer interaction flow.

4. CONCLUSIONS

Based on the analysis, that the finite compact difference scheme has better resolution of high
wavenumbers than WENO scheme and the WENO scheme possesses better performances than
its base ENO scheme, the hybrid finite compact (FC)-WENO schemes are proposed for shock
calculations. The FC-WENO schemes can satisfy the requirement that the FC-schemes are used as
possible in smooth region and the WENO schemes are used at the discontinuous point or critical
point of f ±′

j = 0 (WENO-3 is used in 3-FC-WENO-3) and at point of f ±′′
j = 0 (WENO-5 is used

in 5-FC-WENO-5). The numerical results show that FC-WENO schemes have the uniformly high-
order accuracy, and can improve the capability of shock capturing and fine-scale feature capturing
over the WENO schemes and the original developed FC-ENO schemes. The ACM filter schemes
of Yee et al. have the higher efficiencies than FC-WENOs and WENOs, the disadvantage of them
is that they need to decide an appropriate problem-dependent parameter k.
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